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SUMMARY

We consider the parallel application of an efficient solver developed for the accurate solution of a range
of droplet spreading flows modelled as a coupled set of nonlinear lubrication equations. The underlying
numerical scheme is based upon a second-order finite difference discretization in space and a second-
order, fully implicit, adaptive scheme in time. At each time step, this leads to the need to solve a large
system of nonlinear algebraic equations, for which the full approximation storage multigrid algorithm is
employed. The motion of the contact line between the three phases (liquid, air and the solid substrate)
is based upon the assumption of a thin precursor film, with a corresponding disjoining pressure term in
the governing equations. It is the inclusion of this precursor film in the model that motivates the need for
a parallel solution method. This is because the thickness of such a film must be very small in order to
yield realistic predictions, while the finite difference grid must be correspondingly fine in order to obtain
accurate numerical solutions. Results are presented which demonstrate that the parallel implementation is
sufficiently efficient and robust to allow reliable numerical solutions to be obtained for a level of mesh
resolution that is an order of magnitude finer than is possible using a single processor. Copyright q 2008
John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper is concerned with the efficient and reliable parallel numerical simulation of a range of
droplet spreading problems that may be accurately modelled using a long wave, or lubrication,
approximation. Such problems are of great importance in many industrial applications, ranging
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from the deposition of coatings and inks to direct patterning of functional layers during microchip
production [1, 2]. The lubrication approximation has been widely used to simplify the Navier–
Stokes equations in the situation where inertia effects and the effects of flow across a film may be
reasonably neglected [3–6]. Furthermore, to alleviate the resulting singularity at wetting lines and
to facilitate the spreading motion of the droplets, a popular approach has been to specify a thin
energetically stable wetting layer, or precursor film, over the whole of the substrate surface for all
time [5, 7].

In previous work by the authors [3], we have used this approach to model the spreading of
droplets over a substrate with topographic and/or wetting heterogeneities. By applying a finite
difference discretization in space and an adaptive, implicit scheme in time, combined with a
nonlinear multigrid solver [8–11], it is possible to obtain highly efficient numerical solutions to a
wide range of spreading problems. The primary limitation of this approach, however, stems from
the need to define the thickness of the precursor film in advance. As this thickness is reduced,
the accuracy of the simulations increases but only at the expense of requiring a finer spatial mesh
resolution. In [3] and similar work by other authors [4, 5, 7], calculations have been undertaken
using a larger precursor film thickness than is desired due to the prohibitive computational cost
of working with thicknesses that are physically realistic. In this paper, we demonstrate that it is
possible to reach such physically realistic limits, provided a sufficiently fine finite difference mesh
is used, requiring the exploitation of parallel computer architectures.

The layout of the paper is as follows. In the following section, we briefly introduce the governing
equations and re-iterate the underlying assumptions that these are based upon. Section 3 then
outlines the numerical algorithms that are used and quantifies the argument for finer grids and
more computational resources. The parallel solution procedure is then described and some sample
parallel numerical results are provided in Section 4. Finally, the paper concludes with a short
discussion.

2. THIN FILM FLOW AND DROPLET SPREADING

Figure 1 shows a schematic of the flow of a droplet on a flat substrate inclined at an angle � to the
horizontal. It is assumed that the ratio, �, of typical length scales, H0 and L0, in the perpendicular
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Figure 1. Schematic of the flow of a droplet on a flat inclined substrate.
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and parallel directions, respectively, is small. It is also assumed that the ratio of the precursor film
thickness, H∗, to the typical droplet height, H0, is small. It is then possible to non-dimensionalize
the Navier–Stokes equations and collect together the leading order terms in the small parameter
� in order to yield a simplified system of equations for this thin film flow. Further details are
provided in [3, 6], for example, but the resulting partial differential equations take the following
form:

�h
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p=−∇2(h+s)−�(h)+Bo cos�(h+s) (2)

Here, h and p are the dependent variables (non-dimensional film height and non-dimensional
pressure, respectively), Bo=�gL2

0/� is the dimensionless Bond number (which represents the
ratio of gravitational to surface tension forces) and s is a known function describing surface
roughness of the inclined plane. As has already been indicated, in this model we also include
a so-called disjoining pressure term �(h) in Equation (2), which is used to model slip of the
moving contact lines. This term is based upon the assumption of the presence a thin precursor film,
of non-dimensional thickness h∗ =H∗/H0, which relates the observed contact angle for partially
wetting systems to intermolecular forces that become important for liquids at sub-microscopic
dimensions [5]. Following [3], here we express this disjoining pressure term in the following
form:

�(h)= (n−1)(m−1)
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where �c is the equilibrium contact angle and n and m are the exponents of the interaction potential,
chosen to be 3 and 2, respectively, for all calculations described in this paper.

Note that experimental evidence, such as that presented in [12], suggests that H∗ lies in the
broad range 1–100 nm. Moreover, when the non-dimensionalized film thickness corresponds to a
larger value of H∗, the spreading rate is not generally predicted to a high accuracy [5]. Furthermore,
if the mesh resolution is not of the same order of magnitude as h∗, then there is a danger of the
numerical scheme yielding oscillatory results that may even predict negative film thickness near
to the wetting line [13]. With care, it is possible to develop schemes that are guaranteed to be
positivity preserving regardless of the mesh resolution [14]; however, they are still not accurate
when the mesh spacing is not of the same order as h∗ [6].

Finally, to accompany Equations (1) and (2), boundary conditions are required. So long as the
droplet does not reach the edge of the domain it is acceptable, and simplest, to use symmetry
boundary conditions for both h and p:

�h
�n

= �p
�n

=0 (4)
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3. NUMERICAL METHODS AND PARALLEL SOLUTION PROCEDURE

Application of central finite differences on a mesh with equal spacing, �, in both the x and y
directions yields the following system of differential-algebraic equations for hi, j and pi, j :
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As described in [3], these equations may be integrated in time using an implicit scheme. Here,
we follow [3] and apply a second-order scheme with adaptive step-size selection based upon a
local error estimate. At each time step, this therefore results in the need to solve a large system of
nonlinear algebraic equations for hn+1

i, j and pn+1
i, j , the approximations to hi, j and pi, j , respectively,

at the new time level tn+1.
In this work, we make use of a full approximation storage (FAS) multigrid scheme [8, 9] to

solve the nonlinear systems that arise. This implementation is described in general in [10], for
example, and for these specific equations in [3] (with full details available in [6]). The same
solution algorithm is used at all grid levels, apart from at the coarsest mesh, where an exact
solve is undertaken. To demonstrate the need for a parallel implementation of this solver, consider
Figure 2 that shows mesh convergence results for two different choices of h∗ on the square domain
(0,1)×(0,1) with �=0. It is clear from these figures that the spreading rate is still dependent upon
h∗ for values of this magnitude and that the mesh required to obtain a converged solution gets
finer as h∗ is reduced. Specifically, when h∗ =0.05 the solution is fully converged on a 513×513
mesh, whereas for h∗ =0.02 the solution is not fully converged on such a mesh and a 1025×1025
mesh is required.

The parallel implementation undertaken here follows [15] in its basic philosophy. In particular,
the parallelism is achieved via a geometric decomposition of the domain, which is based upon
a partition of the coarsest grid. This ensures that each of the grids in the multigrid hierarchy is
partitioned in the same geometric manner and, by assigning each subdomain to a single parallel
processor, interpolation and restriction between grids may be undertaken with minimal inter-
processor communication. Such a decomposition is illustrated for 15 subdomains in Figure 3,
where film thickness contours are given for each subdomain. Note that there is a slight mismatch
in contour levels between neighbouring subdomains since, for simplicity, in each subdomain an
equal number of contour levels are generated automatically.

Note that the strip-wise partition illustrated in Figure 3 ensures that each subdomain (and
therefore each processor) has at most two immediate neighbours. Each processor is responsible
for implementing the FAS algorithm on its own subdomain, making use of additional columns of
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Figure 2. Plot of the maximum film height against time computed on a sequence of finer meshes for two
different choices of h∗: 0.05 (upper) and 0.02 (lower).

Figure 3. Film thickness contour plots on 15 processors for a typical droplet spreading problem [7].

‘ghost nodes’ immediately to either side of this subdomain at each mesh level. These ghost nodes
are used to store a copy of the last column of values computed on each neighbouring processor
on each mesh. An illustration of this for a single mesh level is provided in Figure 4. This shows
a partition into four subdomains and the dotted line indicates the part of the grid that is stored on
a typical processor: note that the first and last columns only store a copy of the values actually
computed on the left and right neighbouring processors, respectively.
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Figure 4. Partition of a typical coarse grid across four processors: the dashed line indicates the grid stored
on a typical processor and the shading illustrates the red–black colouring that is used.

For the parallel FAS implementation, the smoother that is used is the same nonlinear red–
black Gauss–Seidel scheme that is shown to be effective in [3]. This scheme is ideal for parallel
implementation since it labels each of the grid points on each processor as either red or black
in such a way that each red point has only black neighbours and vice versa. This is illustrated
in Figure 4 and ensures that all of the red degrees of freedom may be updated concurrently,
followed by all of the black degrees of freedom. Some neighbour-to-neighbour inter-processor
communication is required after each red and each black sweep through the grid in order to update
the corresponding ghost node values. In fact, such inter-processor communication is required at a
number of points in the parallel FAS implementation:

• after each red and each black sweep of the nonlinear red–black Gauss–Seidel smoother at
each grid level;

• after restriction of the residual and solution to each coarser level;
• to obtain the exact solution at the coarsest level;
• after interpolation of the error to each finer level.

In addition to the above neighbour-to-neighbour communication, a short global communication
is also required after each multigrid V-cycle in order to decide whether convergence has been
achieved. Depending upon the choice of solver on the coarsest grid, a similar global communication
may be required for each solve on this grid too.

Note that, for the implementation used in this work, the size of the coarsest possible grid is
determined by the number of processors being used. This is because it is a helpful simplification
to always assume that at least one column of the coarsest grid is owned by each processor.
Furthermore, in situations where the number of columns of the coarsest grid is not an exact multiple
of the processors (such as in Figure 4, where there are 17 columns and 4 processors), then the
additional columns are shared equally between the lowest numbered processors. Hence, for the
example in Figure 4, the first processor owns one more column than each of the other processors.

4. SAMPLE RESULTS

In this section, we present some typical results that have been obtained using the parallel lubrication
solver that has been described. These results fall into two classes: initially we assess the parallel
performance of the solver and then we assess how well we have obtained our goal of reducing the
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precursor film thickness to a size that is consistent with experimental evidence, such as provided
by Starov et al. [12].

Figure 5 shows graphs of the speedup of the parallel solver when run on (i) between 2 and
32 processors for a grid of size 1025×1025 and (ii) between 4 and 32 processors for a grid of
size 2049×2049. In each case, results are plotted for three different parallel computers (denoted
ABAX, SNOWDON and EVEREST) and are presented relative to the smallest number of processors
(i.e. time on p processors divided by time on 2 processors in the first case and divided by time on
4 processors in the second case). All three computers are distributed memory architectures with
fast switching. As can be seen, the parallel performance is relatively good in each case with, as
one would expect, better speedups obtained for the finer mesh problem.

Given the similarities in the scalability of the solver on all three computers, further results will
only be presented for one of the architectures. This machine (EVEREST) has multiple nodes, each
with 8Gb of memory and 2 dual core processors, although the maximum queue size is restricted
to 128 cores. Table I shows typical execution times for five time steps taken on this computer
using a 4097×4097 fine grid, and Table II shows equivalent results using a 8193×8193 fine grid.
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Figure 5. Relative speedup for the parallel multigrid solution on three different parallel architectures with
mesh sizes 1025×1025 (upper) and 2049×2049 (lower): in the first case a minimum of 2 processors is

used and in the second case a minimum of 4.
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Table I. Execution time for 5 time steps for different coarsest grids and different numbers of processors
on a finest mesh size of 4097×4097.

Number of processors
Multigrid Coarse
levels grid 16 32 64 128

4 513 215.5 106.9 53.1 24.2
5 257 143.7 69.9 34.5 15.7
6 129 150.1 73.1 35.8 18.6

Table II. Execution time for 5 time steps for different coarsest grids and different numbers of processors
on a finest mesh size of 8193×8193.

Number of processors
Multigrid Coarse
levels grid 32 64 128

5 513 250.7 154.9 73.6
6 257 247.5 151.0 74.2
7 129 256.0 156.4 78.0

Table III. Execution time for 5 time steps for different finest grids and different numbers of processors
(the brackets indicate the number of multigrid levels used).

Number of processors
Fine
grid 2 4 8 16 32 64 128

1025 56.9 (4) 28.5 (4) 13.9 (5)
2049 67.3 (5) 30.8 (5) 15.0 (5)
4097 69.9 (5) 34.5 (5) 15.7 (5)
8193 73.6 (5)

In each case, different numbers of multigrid levels are considered, corresponding to different
choices of the coarsest grid.

It is clear from Tables I and II that the parallel speedup can continue to increase with the number
of processors, provided the size of the problem is sufficiently large. Indeed, super-linear speedups
even appear to occur as we move from 64 for 128 processors; however, this is primarily due to
the efficiency being worse on 64 than on 128 processors for some reason (note that the time on
128 processors is still more than a quarter of the time on 32 processors in almost every case). It
is also apparent from these tables that the precise choice made for the coarsest grid also has a
bearing on the overall multigrid solution time and, therefore, on the parallel efficiency. In Table III
we, therefore, present results for a variety of fine mesh sizes and process numbers, using the best
possible choice for the coarsest grid in each case.

Note that the results presented in Table III correspond to calculations with three different problem
sizes per processor. The largest problems (for which each processor stores a total of ∼524000
grid points) are denoted by timings which are not underlined. The next sequence of problems (for
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which each processor stores a total of ∼262000 grid points) have timings with one underline, and
the smallest problems (for which each processor stores a total of ∼131000 grid points) are denoted
by timings that are twice underlined. Given that the computational complexity of the underlying
sequential algorithm is shown in [3] to be O(N ), where N is the total number of unknowns, it is
clear that a perfectly scalable algorithm should yield the same time for all runs with a fixed number
of points per processor. Furthermore, as the number of points per processor doubles, the solution
time should double. What we actually see in Table III is remarkably close to this, suggesting that
we have a very good parallel implementation. The small loss of efficiency that is observed may be
attributed to the overhead of inter-processor communication. This overhead will be most apparent
on the coarsest levels of the multigrid hierarchy, where the amount of computation per processor
is relatively small.

Having established the efficiency of the parallel implementation, we now present some results
that make use of this parallel code in order to reduce the size of the precursor film thickness
significantly from that which is possible in a sequential implementation. Figure 2 clearly shows
that the converged results obtained using a precursor film thickness of 0.05 are significantly
different from those obtained when h∗ =0.02. In Figure 6, we now present results computed for
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Figure 6. Plot of the maximum film height against time computed on a sequence of finer meshes for two
different choices of h∗: 0.01 (upper) and 0.005 (lower).
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Figure 7. Plot of the maximum film height against time computed on
a sequence of finer meshes for h∗ =0.001.

h∗ =0.01 and 0.005 on a sequence of grids of up to 8193×8193. It may be observed that in the
former case (h∗ =0.01) a fully converged solution is obtained on the 2049×2049 grid, while the
4097×4097 grid is required for convergence when h∗ =0.005. By simple extrapolation, we may
reasonably assume that the 8193×8193 grid will be sufficient to compute a converged solution
when h∗ =0.0025; however, it would only be possible to confirm this using an even finer grid (and
showing that the solution is unchanged) which would require more than 128 processors.

Given the non-dimensionalization that was used to derive Equations (1) and (2), it is possible
to associate a given non-dimensional film thickness h∗ with a dimensional value for any given
problem. For the parameters used to obtain the results shown in Figure 6, h∗ =0.005 corresponds
to a dimensional precursor film thickness of 65 nm (see [16]), which is just within the range of
1–100 nm suggested by Starov et al. [12]. We finish this section by showing results for an even
smaller value of h∗, 0.001, corresponding to a dimensional precursor film thickness of 13 nm. The
maximum film thickness against time is plotted for a variety of finest meshes in Figure 7. It is
clear from this figure that, as expected, the 8193×8193 mesh is still not sufficiently fine to obtain
a fully converged solution. A finer grid and more processors are therefore required. As a final
observation, we note that when h∗ is very small, if the mesh spacing is much greater than h∗,
then the computed results are extremely poor (e.g. a mesh of dimension at least 1025×1025 is
required to get even qualitatively realistic results when h∗ =0.001).

5. DISCUSSION

This work has been motivated by the need to use very fine spatial resolution when solving the
lubrication equations for a spreading droplet based upon the assumption of a precursor film.
This model can provide accurate numerical predictions, provided the precursor film thickness is
sufficiently small and the computational grid is correspondingly fine. It has been demonstrated
that the use of parallel processing allows much finer meshes to be used than is otherwise feasible
and at a parallel efficiency that is both scalable and cost effective. As a result, it has been possible
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to simulate spreading droplets using a precursor film thickness that is physically justified for the
first time.

Current work now focuses on applying the numerical methods and software that we have
developed here to a range of challenging flow problems. Future developments could include
application of adaptive meshing techniques to ensure that the finest multigrid levels are only present
in the regions in which they are required, e.g. [17], and the incorporation of this approach within
the parallel computing framework, as in [18], for example.
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